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Abstract

In classical fluid mechanics, solid structures are often treated as rigid boundaries that do not
interact with fluid flow. However, many engineering applications require consideration of both
aerodynamic performance and structural response, leading to the study of aeroelasticity. Aeroe-
lasticity examines the interaction between aerodynamic forces acting upon non-rigid (deformable)
structures and the resulting structural deformations. This research aims to integrate a low-fidelity
aeroelastic module into the open-source aircraft design tool, CEASIOMpy, as part of the Horizon
Europe project Colossus. The developed module, AeroFrame, combines a finite element method
(FEM) implementation of linear beam equations for structural calculations with the vortex lat-
tice method (VLM) for aerodynamic computations. AeroFrame is limited to static aeroelastic
analyses. A partitioned approach is employed, using separate solvers for fluid and structural com-
putations. The module maps the aerodynamic forces and the structural displacements between
the two non-matching meshes (fluid and structural meshes) using nearest neighbor interpola-
tion. Validation of AeroFrame shows consistent results for deflections smaller than around 2% of
the semi-span length, aligning well with literature data and medium- to high-fidelity computa-
tions. Tests on simple rectangular wings and complex aircraft wing geometries demonstrate its
capability to handle various configurations, including different cross-sections, sweep angles, and
dihedral angles. While AeroFrame provides accurate results in small deformation scenarios, its
estimations for large displacements differ from the solutions obtained with nonlinear shell mod-
els. AeroFrame is well-suited for preliminary aircraft design tasks, enabling extensive iterative
analyses across various material properties and wing geometries due to its low computational
cost.
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1 Introduction

1 Introduction

In classical fluid mechanics, the solid structure is treated merely as an infinitely rigid boundary
that does not interact with the fluid flow. In real engineering applications, both aerodynamic
performance and structural response have to be considered. This necessity leads to the study of
the interaction between aerodynamics and structural mechanics, known as aeroelasticity. Aeroe-
lasticity is an interdisciplinary field of study that focuses on the interaction between aerodynamic
and elastic forces, occurring when a non-rigid body is exposed to fluid flow. The aerodynamic
forces that act on the non-rigid structures lead to structural deformations, and these structural
deformations affect the aerodynamic forces. Aeroelasticity is a subfield of fluid-structure inter-
action (FSI). Aeroelastic phenomena are critical in the design and analysis of aircraft, bridges,
and other structures subjected to aerodynamic loading, as they can significantly impact the
structural integrity and performance.

The aerospace industry is looking for safer, more eco-friendly technologies while also aiming
to reduce costs. This shift demands a new approach to aircraft design, with a focus on enhancing
overall operational efficiency [1]. This induces a need for weight reduction and increased struc-
tural efficiency, leading to the adoption of composite thin-walled beam structures [2]. Improving
aerodynamics and reducing drag can be achieved by increasing the aspect ratio of wings. There
is a growing interest in high-aspect-ratio wings (HARWs) for use in transport aircraft, as they
improve the lift to drag ratio. Increasing the aspect ratio effectively reduces the induced drag
due to the downwash component generated by wingtip vortices. Indeed, a longer span helps mit-
igate the three-dimensional effects of the wing geometry on the flow. Designing wings with very
high aspect ratios while maintaining sufficient structural strength is challenging. As a result, the
aspect ratio of a conventional aircraft represents a compromise between competing aerodynamic
and structural demands [1, 3, 4]. High-aspect-ratio wings are more flexible and undergo larger
deformations that can lead to structural failure. This issue needs to be addressed in the aeroe-
lastic design of the wing and drive the research and development of innovative computational
tools for efficient and precise aeroelastic analysis [5].

The objective of this work is to integrate a static aeroelastic module in the open source
conceptual aircraft design environment CEASIOMpy, in the framework of the European project
Colossus. CEASIOMpy is a versatile tool for creating complex design and optimization work-
flows for both conventional and unconventional aircraft configurations. It is maintained by CFS
Engineering in Switzerland, and Airinnova in Sweden. It offers a range of tools for various air-
craft design disciplines, with its aerodynamic modules being the most advanced. These tools
facilitate the automatic generation of aerodynamic meshes and computational fluid dynamics
(CFD) calculations. CEASIOMpy is mostly written in Python and is based on the Common
Parametric Aircraft Configuration Schema (CPACS) [6], a data definition for the air transporta-
tion system developed by the German Aerospace Center DLR, facilitating information exchange
among engineering tools. Its central model approach minimizes the number of interfaces.

Typical existing numerical aeroelastic solvers integrate the finite element method (FEM) for
structural analysis with various high-fidelity CFD models. They often yield detailed outcomes
but require significant computational resources in terms of both storage and time. Their appli-
cation for preliminary aircraft design is therefore not appropriate; the iterative design process,
which involves altering various parameters, requires the use of faster aerodynamic models [7]. In
this work, computationally simple methods are employed: a FEM beam model is paired with the
vortex lattice method (VLM), which is a low-fidelity aerodynamic model. Although constrained
to certain flow conditions by the VLM assumptions, this approach provides fast numerical pre-
dictions of aerodynamic loads on lifting surfaces [5]. The FEM and VLM tools are existing
open-source solvers and were not developed during this project. The main goal of this work is
to couple them to create the aeroelastic module.
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2 Theoretical background

The present report is structured as follows. A theoretical review of aeroelasticity, vortex
lattice method, and beam theory is presented in section 2. The implementation of both fluid
and structural models, as well as the aeroelastic coupling, are explained in section 3. The results
and limitations are discussed in sections 4 and 5, respectively.

2 Theoretical background

2.1 Aeroelasticity review

Aeroelasticity includes both static and dynamic phenomena. A short overview of fluid-structure
interaction engineering issues is given in the following subsections. A detailed description can be
found in Aircraft Stuctures for Engineering Students by T.H.G. Megson [8]. In this work, only
static aeroelastic calculations are considered.

2.1.1 Static aeroelasticity

Static aeroelasticity involves the interaction between aerodynamic forces and structural deforma-
tion under steady-state conditions, during cruise for instance. If the rigidity of the wing is high
enough, an equilibrium between aerodynamic loads and elastic forces can be reached, leading
to a stable configuration of the wing. In the case of a too flexible structure, instability such as
divergence can occur; the aerodynamic loads induce a twist of the wing around the span axis,
leading to an increase in forces and creating a feedback loop until structural failure. Another
static aeroelastic problem is control reversal; the elastic deformation of the structure can alter
(or reverse) the expected influence of control surfaces like ailerons, elevators, and rudders. It
affects the aircraft’s stability as the pilot cannot control the aircraft in the usual way. Both
divergence and control reversal can be prevented by performing static aeroelastic computations
during the wing design.

2.1.2 Dynamic aeroelasticity

Dynamic aeroelasticity deals with the interaction between unsteady aerodynamic forces and
structural response. It often leads to complex oscillatory behavior, influenced by both elastic
and dynamic properties of the wing. Flutter is a dynamic instability, characterized by a coupling
between the energy from aerodynamic loads and oscillatory modes of the structure. Wings must
be carefully designed to avoid flutter phenomena, which can lead to rapid structural failure.
Dynamic analyses require more advanced numerical tools and significantly greater computational
time; these are not covered in this work.

2.2 Vortex lattice method (VLM)

The aerodynamic loads used for the aeroelastic calculations are computed using the vortex lattice
method (VLM), which is a low-fidelity numerical model generally used in the initial phases of
aircraft design. It can be applied to 3-dimensional aerodynamic configurations composed of thin
lifting surfaces with small angles of attack and sideslip. The following theoretical review is mainly
based on the textbooks Flight Vehicle Aerodynamics by M. Drela [9], Low-Speed Aerodynamics
by J. Katz and A. Plotkin [10], and Aerodynamics for Engineers by Bertin and Smith [11].

2.2.1 Assumptions of the VLM

The VLM is built on the quasi-steady ideal flow theory, also known as potential flow. This
assumes incompressible, irrotational, and inviscid flow. However, VLM solvers usually employ
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2 Theoretical background
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Figure 1 – Definition of the normal vector of the lifting surface, for (a) a symmetric airfoil with
no camber, and (b) a non-symmetric airfoil with positive camber (figure adapted from [12]).

the classical Prandtl-Glauert transformation to rescale the incompressible equations, using the
factor

η =
√
1−M2

∞, (2.1)

with M∞ being the upstream Mach number. This transformation allows to perform computations
with a Mach number up to 0.6. The VLM assumes thin lifting surfaces and neglects the thickness
of the wing in the computations of the aerodynamic forces. The camber line of the airfoil profile
can be taken into account by the orientation of the normal vector of the wing surface (fig. 1).
Another assumption is that the angle of attack and the angle of sideslip are both small, as flow
separation cannot be modeled. Since the flow is ideal, viscous effects are neglected, as well as
turbulence and boundary layer phenomena. Only lift-induced drag can be computed.

2.2.2 Equations of the VLM

The assumption of irrotational flow leads to the existence of a potential scalar variable, called
velocity potential [10]. The total flow velocity at each point is given by its gradient:

V = ∇(Φ∞ + ϕ), (2.2)

where Φ∞ is the upstream velocity potential and ϕ is the perturbation velocity potential. Com-
bining eq. (2.2) with the continuity equation for incompressible flow, i.e. ∇ ·V = 0, leads to the
following linear partial differential equation

∇2(Φ∞ + ϕ) = 0, (2.3)

called Laplace equation. The latter second order equation requires two boundary conditions
to be solved. The solutions for a flow around a wing must satisfy the flow-tangency boundary
condition on the body [4]. This Neumann boundary condition on the velocity potential imposes
a zero normal flow across the wing surface:

∇(Φ∞ + ϕ) · n̂ = 0, (2.4)

where n̂ is the surface normal vector. The second boundary condition is that the perturbation
velocity must vanish in the far field:

lim
|r|→∞

∇ϕ = 0, (2.5)

with r = (x, y, z) being the position vector. Numerically, the VLM is an implementation of the
general 3-dimensional lifting surface problem, in which the flow around the wings of an aircraft
configuration is modeled using vortex-sheets with a strength distribution [9]. This principle uses
vortex filaments bound to a fixed location in the flow to replace the wing, called bound vortices.
According to Helmholtz’s theorem, a vortex filament cannot end in the fluid; therefore it must

3



2 Theoretical background
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Figure 2 – Representation of one single horseshoe vortex of strength Γi, composed of a bound
vortex located a the quarter-chord of the panel, and two trailing vortices going downstream to
infinity.

continue as two free vortices trailing downstream from the bound endpoints to infinity. It leads
to vortices with a horseshoe shape, called horseshoe vortices [4] (fig. 2). The VLM discretizes the
vortex-sheet strength distribution by dividing the lifting surfaces into panels and uses a lattice
of horseshoe vortices, each of them contributing to the flow velocity at any field point. The
number of panels used depends on the required accuracy in the computation of the pressure
distribution on the wing surface. The strength Γi of each vortex is initially unknown and must
be determined as part of the solution. The bound vortex, modeling the lifting properties, is
placed at the quarter chord position of the panel. The control point, at which the flow-tangency
boundary condition is satisfied, is located at the center of the panel’s three-quarter chord line
[10, 11]. The velocity field induced by the lattice of panels at any point r can be computed by
a sum of Biot-Savart line integrals [4, 9]:

V (r) =

N∑
i=1

Γi

4π

∫
dl× (r − r′)

|r − r′|3
, (2.6)

where dl is a vector along the vortex filament at position r′, and N is the number of panels.
The velocity wij ≡ w̄ijΓj induced on the ith vortex by the jth vortex can be obtained, where the
terms w̄ij form the so-called aerodynamic influence coefficient (AIC) matrix [13]. The free-stream
velocity vector is defined as

V∞ = U∞

cosα cosβ
− sinβ

sinα cosβ

 , (2.7)

where U∞ is the free-stream speed, α is the angle of attack, and β is the angle of sidesplip.
For each control point, the induced velocity contributions of every vortex associated with each
panel are summed. The Neumann flow-tangency boundary condition given by eq. (2.4) has to
be satisfied at each panel’s control point:

Vi · n̂i =

V∞ +

N∑
j=1

w̄ijΓj

 · n̂i = 0, (2.8)
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2 Theoretical background

with N being the number of panels. This boundary condition problem results in the following
set of linear algebraic equations:

a11 a12 . . . a1N

a21
. . .

...
...

. . .
...

aN1 . . . . . . aNN



Γ1

Γ2
...

ΓN

 =


b1
b2
...
bN

 , (2.9)

where aij = w̄ij · n̂i and bi = U∞[− cosα cosβ, sinβ,− sinα cosβ] · n̂i. The far field boundary
condition given by eq. (2.5) is directly satisfied by all the singularities considered, as the per-
turbation velocity obtained from the Biot-Savart law vanishes for r → ∞ [10]. The system of
equations is solved for the vortex strength Γi, and the aerodynamic force acting on each panel
is computed from the Kutta-Joukowski theorem:

Fi = ρVi × liΓi, (2.10)

with ρ being the fluid density, Vi the velocity vector at the midpoint of the ith bound vortex,
and li = rb − ra (fig. 2) the bound vortex vector [9].

2.3 Classical beam theory

FEM includes in general several methods to compute the deformation of wings. In this work, the
Euler-Bernoulli beam theory (also known as classical beam theory) is used. It is a simple method
that provides good results in the case of high aspect ratio wings [2], which is the case of most
aircraft wings. The beam model is computationally less expensive than plate or shell model and
provides comparable results for static aeroelastic response and preliminary wing design [2, 14].
The differences are mainly due to the consideration of shear deformations in the shell model,
that are neglected in the beam model. The following Euler-Bernoulli beam theory review is
based on the textbooks Structural Analysis by Bauchau, Craig [15] and Elastic Beams in Three
Dimensions by Andersen, Nielsen [16].

2.3.1 Assumptions of classical beam theory

A beam is a structure with one of its reference lengths being much larger than the other two.
The longitudinal x−axis of the beam is defined along the longer dimension, and the cross-section
belongs to the y−z plane. The x−axis is assumed to pass through the centroid of the cross-
section (centroidal axis system), and the y− and z−axis are defined as the principal centroidal
axes of bending.

A first assumption of Euler-Bernoulli beam theory is that the cross-section of the beam is
infinitely rigid in its own plane. The cross-section remains plane after beam deformation, and
normal to the deformed axis of the beam. The deformed position of the cross-section is uniquely
defined by a position vector u = u(x) and a rotation vector θ = θ(x) with the following
components:

u =

uxuy
uz

 , θ =

θxθy
θz

 , (2.11)

in the (x, y, z)-coordinate system. To permit the use of linear theory, it is assumed that displace-
ments and rotation components are small. The material is assumed isotropic and the constitutive
law between stresses and strains is given by linear Hooke’s law.

5



2 Theoretical background

2.3.2 Governing equations of beam theory

The governing equations of the 3-dimensional Euler-Bernoulli beam theory can be obtained from
a force and moment balance on an infinitesimal beam element loaded by external distributed
forces q = (qx, qy, qz) and external distributed moments m = (mx,my,mz) [12]:

d

dx

Fx

Fy

Fz

+

qxqy
qz

 = 0, (2.12a)

d

dx

Mx

My

Mz

+

mx

my

mz

+

 0
−Fz

Fy

 = 0, (2.12b)

where F = (Fx, Fy, Fz) and M = (Mx,My,Mz) are the internal forces and moments, respec-
tively. In the limit of small deformations, the following relations can be obtained for axial
stretching force, bending moments, and torsional moment:

Fx = EA
dux
dx

, (2.13a)

Mz = EIz
d2uy
dx2

, (2.13b)

My = −EIy
d2uz
dx2

, (2.13c)

Mx = GJ
dθx
dx

, (2.13d)

where E and G are the elastic and shear moduli of the material, A is the beam cross-section
area, Iy and Iz are the second moments of area of the beam cross-section, and J is the polar
moment of inertia of the beam cross-section. Combining equilibrium eqs. (2.12a) and (2.12b)
with eqs. (2.13a) to (2.13d) leads to the following set of governing equations:

d

dx

[
EA

dux
dx

]
+ qx = 0, (2.14a)

d2

dx2

[
EIz

d2uy
dx2

]
+

dmz

dx
− qy = 0, (2.14b)

d2

dx2

[
EIy

d2uz
dx2

]
− dmy

dx
− qz = 0, (2.14c)

d

dx

[
GJ

dθx
dx

]
+mx = 0. (2.14d)

The above four ordinary differential equations are uncoupled, i.e. each of them can be solved
separately. The use of the principal centroidal axis of bending decouples the axial and bending
behaviors of the beam [15]. The equations are second order in the axial displacement ux and
torsional angle θx, and fourth order in the transverse displacements uy and uz. Twelve boundary
conditions are needed to solve the entire set of equations. In the case of an aircraft wing, the
root can be modeled as clamped at x = 0, leading to:

u(x = 0) = 0, θx(x = 0) = 0, (2.15a)

u′y(x = 0) = u′z(x = 0) = 0, (2.15b)

which imposes neither displacements nor rotations and zero displacement slopes at the wing root
(the notation [.]′ stands for derivative with respect to x). The wing tip located at x = L is

6



3 Computational model implementation

modeled as a free-end, meaning that the bending moments and the shear force are zero at the
tip. It leads to the following set of boundary conditions:

u′x(x = L) = 0, θ′x(x = L) = 0 (2.16a)

u′′y(x = L) = u′′z(x = L) = 0, (2.16b)

d

dx

[
EIz

d2uy
dx2

] ∣∣∣∣
x=L

=
d

dx

[
EIy

d2uz
dx2

] ∣∣∣∣
x=L

= 0. (2.16c)

The governing eqs. (2.14a) to (2.14d) can be solved for the displacement vector u and the torsional
rotation θx using the above boundary conditions. Since Euler-Bernoulli theory assumes that the
rotated cross-section is always orthogonal to the deformed beam axis, the rotations θy and θz
can be obtained from the following kinematic relations [16]:

θy = −duz
dx

, θz =
duy
dx

, (2.17)

assuming small displacements and small rotations.

3 Computational model implementation

This section provides a description of the numerical tools used in the framework of the aeroelastic
module, called AeroFrame, for both fluid and structural computations. The software employed
for vortex lattice method implementation and finite element method beam model are presented.
Finally, the implementation of the aeroelastic coupling is described.

3.1 Fluid model

The vortex lattice method is implemented using the Athena Vortex Lattice (AVL) solver
written by M. Drela and H. Youngren. An objective of this work is to build a module based
on a CPACS [6] format file given as input in CEASIOMpy. It has a XML structure and stores the
definition of all components of the aircraft, such as wing section geometry, fuselage shapes, or
engine data. The first step is to read the CPACS and extract all the information needed to build
the plane geometry in AVL. Multiple Python scripts have been developed to execute this task,
using the TIXI library [17] created by DLR, which simplifies the reading of XML structure as well
as the data extraction.

1 aircraft_name
2

3 #Mach
4 0.3
5

6 #IYsym IZsym Zsym
7 0 0 0
8

9 #Sref Cref Bref
10 122.4 4.193 25.6
11

12 #Xref Yref Zref
13 0.0 0.0 0.0
14

Figure 3 – Example of the header of AVL geometry input file. It contains the aircraft name,
the free-stream Mach number, the symmetry settings, the reference dimensions, and the default
location about which moments and rotation rates are defined.

7



3 Computational model implementation

1 SURFACE
2 Wing
3

4 !Nchordwise Cspace Nspanwise Sspace
5 20.0 1.0 50.0 1.0
6

7 YDUPLICATE
8 0
9

10 ANGLE
11 0.0
12

13 SCALE
14 1.0 1.0 1.0
15

16 TRANSLATE
17 12.746 0.0 -1.136
18

19 SECTION
20 #Xle Yle Zle Chord Ainc
21 0.000 1.734 0.000 6.076 2.0
22

23 AFILE
24 /users /.../ D150_arifoil1.dat

Figure 4 – Example of the surface data of AVL input file. It defines the number of horseshoe
vortices to use, some geometric parameters, and the sections of the wing. Note that only one
section is shown for the sake of space.

3.1.1 Geometry input file for AVL

After reading the CPACS file to extract the aircraft geometry, the next step is to produce an input
file aircraft.avl that contains the vortex lattice parameters and the aerodynamic geometry
through the definition of the wing sections properties. The geometry is described in a cartesian
coordinate system: the x−axis is oriented downstream along the aircraft fuselage axis, the y−axis
goes along the span of the right wing, and the z−axis is oriented upward. Only the main
parameters of the input file are presented; a full description can be found in AVL documentation.

Header data: The input file starts with a header containing first the aircraft name, the free-
stream Mach number, and symmetry settings (fig. 3). Reference surface area Sref, chord length
Cref, and span length Bref are provided for the calculation of the aerodynamic coefficients. The
default location about which moments and rotation rates are defined by Xref, Yref, and Zref.

Surface data: Each lifting surface is declared with the SURFACE keyword, followed by the
general parameters of the wing (fig. 4). The number of chordwise and spanwise vortices placed on
the surface are precised (Nchord and Nspan), as well as the chordwise and spanwise vortex spacing
parameter (Cspace and Bspace). These parameters define the desired vortex lattice resolution to
discretize the wing. The YDUPLICATE keyword creates a second surface as a geometric symmetry
of the one being defined. The duplicated surface is not assumed to be an aerodynamic image,
but is truly independent. Practically, defining the right wing together with YDUPLICATE 0.0 will
conveniently create the entire wing. The SCALE and TRANSLATE keywords allow convenient 3-
dimensional rescaling and relocation of the entire surface. The ANGLE keyword is used to modify
the incidence angle of the entire surface.
Once the general parameters of the lifting surface are defined, the wing is divided into multiple

8



3 Computational model implementation

x

y

Sections Panel

Strip

(a) (b)

z

x

yz

Figure 5 – Wing geometry and meshing definition: (a) the wing is defined by 4 sections along
the span, and (b) discretization of the wing into 5× 15 panels.

Figure 6 – Aircraft configuration in AVL including main wings, vertical and horizontal stabilizers,
and fuselage.

sections (fig. 5). At least two of them are needed to define a wing: the root section and the
tip section. The SECTION keyword creates an airfoil-section camber line at a spanwise location
on the wing surface. Its position is defined by the leading edge location (xle, yle, zle), the chord
length c, and the local incidence angle. The trailing edge is located at (xle + c, yle, zle), i.e. each
section remains in the x-z plane. The local chord and incidence angle are linearly interpolated
between the multiple sections along the span. If not specified, the airfoil camber line shape is a
flat plate. The AFILE keyword can be used to define non-flat camber lines. The path to a file
containing the airfoil points (x/c, y/c) has to be provided to compute the camber line and adapt
the orientation of the normal surface vector along the chord.

Body data: The BODY keyword can be used to define a fuselage part. It is modeled with a
source and a doublet line along its longitudinal axis. The location parameters are similar to the
ones described for the wing surface definition. The BFILE keyword allows to give the path to
a file containing the side view points coordinates of the fuselage, which is assumed to have a
circular cross-section. The diameter of the fuselage is computed as the difference between the
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top and bottom z values for each x location along the longitudinal axis. Such a fuselage body
produces no lift, but will still influence the moments. Figure 6 shows an example configuration
of an aircraft definition in AVL, including wings and fuselage.

The first task of this project was to develop Python scripts to extract the aircraft geometry
from the CPACS file and translate it to the AVL input file definition just described.

3.1.2 Execution of AVL and results

Once the geometry is well defined in AVL, the flight conditions have to be specified. In CEA-
SIOMpy, the user provides the Mach number, the altitude, the angle of attack, and the angle of
sideslip. The ambiance library [18] is used to compute the air density and the speed of sound
from the flight altitude. This library is a full implementation of the International Civil Aviation
Organization (ICAO) standard atmosphere 1993, written in Python. The calculation can then
be executed and the system given by eq. (2.9) is solved for the strength of the vortices. Total
forces, as well as loads for the individual surfaces, strips, or vortex elements are computed. In the
frame of an aeroelastic analysis, the aerodynamic force applied to each panel is needed in order
to properly define the load distribution on the structural model. For each panel, AVL provides
the (x, y, z) coordinates of the bound vortex. The panel’s area is computed as

Ap =
dxW

cos θ
, (3.1)

where dx and W are respectively the panel length and width, and θ = − arctan(s) with s being
the slope of the local camber line. The local normal vector is derived from the local incidence
αp and the strip dihedral angle γ as

n̂ = cos θ
n1

|n1|
+ (1− cos θ)n̂2

(
n̂2

nT
1

|n1|

)
+ (1− sin θ)

n1

|n1|
¯̄T , (3.2)

where n1 =

 sinαp cos γ
− cosαp sin γ
cosαp cos γ

, n̂2 =

 0
cos γ
sin γ

, and ¯̄T =

 0 − sin γ cos γ
sin γ 0 0

− cos γ 0 0

.

The aerodynamic force F acting on each panel is finally computed as:

F = qApCpn̂, (3.3)

with q = ρU2
∞/2 being the dynamic pressure and Cp the pressure coefficient. In a few words,

AVL computations allow to determine the resulting force for each panel element, along with its
point of application on the wing.

3.2 Structural model

The structural computations are executed using Frame Analysis Tool (FramAT) [19], a FEM im-
plementation of the Euler-Bernoulli linear beam theory developed during a Msc Thesis [12] at
Airinnova.

3.2.1 FramAT model definition

The beam is discretized with a mesh of line segment elements. Each node is defined by its
(x, y, z) coordinates and a unique identifier (UID), allowing an easy access to a specific node or
range of nodes. Each node has 6 degrees of freedom (DOF): 3 for translation and 3 for rotation.
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All distinct beam features have a UID, permitting properties, loads, and boundary conditions
to be precisely applied. A desired number of material and cross-section features can be created,
containing the material and geometric properties. This method allows for the modeling of beams
with variable cross-sections along their axes. It is appropriate for the case of an aircraft wing;
the cross-sectional area generally decreases from the root to the tip, and the airfoil profile may
also vary along the span. The area and the second moments of inertia of each wing section are
numerically computed from the points of the corresponding airfoil profile given in the CPACS input
file. Then, the values are linearly interpolated between the sections along the span to obtain
the geometric properties at each beam node. There are multiple ways of applying external
aerodynamic forces to the nodes of the beam structure. Forces and moments can be applied to
specific nodes, as point loads. Distributed loads (forces and moments by unit length) can be
applied over a range of different nodes. The (x, y, z) components of the forces and moments (or
forces and moments by unit length) have to be specified. In this study, the aerodynamic force
acting on each VLM panel is applied to a beam node as a point load (the transfer of the forces
to the structural mesh is discussed later). Appropriate boundary conditions must be employed
to ensure the beam structure is statically determined (or isostatic) to run a static analysis. In
the framework of wing deformation analysis, all DOF are fixed at the wing root.

3.2.2 Execution of FramAT and results

After the model definition, the beam governing eqs. (2.14a) to (2.14d) are solved by FEM, with
a Galerkin discretization method. The solution gives the displacement vector u and the rotation
vector θ at each structural node, quantifying the wing deformation under the aerodynamic loads.

3.3 Aeroelastic coupling

3.3.1 Aeroelastic-loop

The main challenge of this work is to couple the aerodynamic loads, computed by the VLM, with
the FEM model for structural deformations of the wing. The pressure distribution computed
on the wing surface induces a deformation, which alters the aerodynamic load, resulting in a
subsequent deformation. This iterative interaction between aerodynamic forces and structural
response is modeled in an aeroelastic-loop (fig. 7). In this work a partitioned approach is used, i.e.

Start VLM computations

FEM computations

ConvergenceEnd
Yes No

Deformations

Aerodynamic loadsDeformed geometry

Undeformed geometry

Figure 7 – Principle of the aeroelastic-loop, starting from the undeformed configuration and
iterating between fluid and structural computations to find the final shape of the wing. Note
that the loop stops if the maximum number of iterations is reached.
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x
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U∞
Beam nodes

VLM nodes

Figure 8 – Illustration of the non-matching meshes on a wing. Each VLM panel is assigned to
the closest beam node (figure adapted from [12]).

separate solvers for fluid and structural computations are employed. This method contrasts with
the monolithic approach, which solves a single system of coupled equations, including both fluid
and structural dynamics [20]. The partitioned approach necessitates the transfer of information
between fluid and structure solvers at each iteration; the aerodynamic forces are transferred to
the nodes of the beam model, and the displacement of the structural nodes is transmitted to the
VLM mesh. The following subsections give a description of the data transfer.

3.3.2 Coupling of VLM/FEM meshes and mapping method

The VLM discretizes the lifting surfaces into panels, resulting in a 2-dimensional mesh. On the
other hand, the beam model employs a 1-dimensional mesh composed of line segment elements.
During the aeroelastic-loop, the data exchange has to be done between these two non-matching
meshes (fig. 8). This mismatch is usually always present in FSI analysis, as CFD computa-
tions generally require a much more refined mesh compared to structural calculations [21]. A
comparison of coupling methods for information transfer between non-matching meshes in FSI
computations has been done by de Boer et al. [22]. In this work, the nearest neighbor inter-
polation is used; each VLM panel is assigned to the closest beam node. This is the simplest
and fastest method to obtain information from a mesh to another, and it ensures conservative
mapping while transferring structural displacements or point loads [22, 23].

3.3.3 Work conservation and load/displacement mapping

The beam nodes are positioned at the mid-chord location along the wing span, hence most of the
aerodynamic forces computed by VLM are acting with an offset from the beam axis. To account
for this offset, the force is transferred from the panel to the assigned beam node, and a moment
is applied to consider the distance between the original application point of the force and the
projected application point. Assuming that the load is transferred via a rigid connection, the
projected force together with the moment have the same contribution as the original force [12].
To ensure the aeroelastic-loop is physically meaningful, deformations and loads must be equal
at the interface between fluid and structure. All aerodynamic loads have to be transmitted from
the fluid to the structure, and the work done by the fluid on the panel surface has to be the same
as the work done by the transferred forces on the structure [20]. Define a beam node P , and its
assigned panel surface Ω on which an aerodynamic force FA is applied (fig. 9). The resulting
point loads acting on the beam structure are:

F S = FA, (3.4a)
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FA

FS

δS

δA

MS

θS

r

P

Ω

Figure 9 – Loads and displacements of a beam node P and the assigned panel element Ω. The
upper-script S and A stand for structural mesh and aerodynamic mesh, respectively (figure
adapted from [20]).

MS = r × FA, (3.4b)

where r is the distance vector between the beam node P and its assigned VLM point. The
displacements δS and rotations θS of the beam node are solved with the FEM implementation of
the beam equations presented in section 2.3. The associated displacement δA of the panel surface
can be obtained from the work conservation principle [20]. The aerodynamic force produces a
work

WA = FA · δA, (3.5)

and the work done by the transferred loads on the structure is

WS = F S · δS +MS · θS . (3.6)

To ensure conservation of work, i.e. WS = WA, and from eqs. (3.4a) and (3.4b), the displacement
of the panel must be

δA = δS + r × θS . (3.7)

The displacement of the panel surface depends on both the beam node displacement and its
rotation. The value of δA is used to define the new position of the panel surface from its current
configuration. It results in a deformed wing geometry, which is used to compute the updated
aerodynamic forces to continue the aeroelastic-loop.

3.3.4 Convergence of the aeroelastic-loop

The aeroelastic-loop iterates between aerodynamic loads and structural deflection computations
until the wing tip vertical deformation δz does not change significantly between successive iter-
ations k and k − 1: ∣∣∣∣δkz − δk−1

z

δk−1
z

∣∣∣∣ < ε, (3.8)

where ε is the relative tolerance. The default value of ε is set to 10−3, and it can be adjusted
by the user. A maximum number of 8 iterations is imposed to avoid an infinite loop in case of
divergence of the results.
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Figure 10 – Convergence of the mid-chord wing tip vertical deflection δz, as function of the
number of structural nodes N . Each curve corresponds to a different VLM discretization of the
wing into Nchord × Nspan panels. Wing geometry and flow conditions: b/2 = 5 m, t = 0.02 m,
U∞ = 30 m s−1, α = 1◦.

4 Results and discussions

This section presents the results of the aeroelastic model developed in this work, AeroFrame.
The model validation is performed in three main parts. First, AeroFrame results are compared
with available data from the literature. Then, the model outputs are evaluated against medium-
and high-fidelity computations. Finally, some aeroelastic computations are performed on real
wing geometry and compared with high-fidelity calculations. The results section ends with an
investigation of the effects of the sweep angle and the taper ratio on the structural response of
a wing.

4.1 Model validation

4.1.1 Literature-based validation

The first validation tests are made using available results from the literature. The outputs of
the newly developed model are compared with the results of V. Gulizzi and I. Benedetti [5],
and E. Carrera et al. [2]. In both references, the VLM is coupled with a 1-dimensional FEM
beam model. Additionally, E. Carrera et al. [2] provide deformation results computed using a
NASTRAN shell model, again with the aerodynamic loads computed using VLM. The test case
is a rectangular flat wing made of an isotropic homogeneous elastic material having an elastic
modulus E = 69 GPa, and a shear modulus G = 25.9 GPa. The chord of the wing is c = 1 m,
the free-stream air density ρ∞ is set to 1.225 kgm−3, and the angle of attack is α = 1◦ for all
computations. The rectangular wing is discretized into 10 × 50 panels, while the beam mesh
is composed of N = 5 nodes in all tests. The span of the full wing b, its thickness t, and the
free-stream velocity U∞ are varying throughout the tests.

Convergence analysis and verification of work conservation: Before making simulations
to compare the results of the newly developed model with those from literature, a convergence
study of the aeroelastic model is performed for a wing geometry with b/2 = 5 m and t = 0.02 m,
a free-stream velocity U∞ = 30 m s−1 and an angle of attack α = 1◦. For each discretization of
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U∞ [m/s] WA
tot [J] WS

tot [J] Difference [%]

10 1.306 · 10−6 1.323 · 10−6 1.3
30 1.732 · 10−3 1.745 · 10−3 0.75
50 5.513 · 10−3 5.537 · 10−3 0.38

Table 1 – Verification of the work conservation principle between the total aerodynamic work
WA

tot and the total structural work WS
tot at varying free-stream velocities. Wing geometry and

flow conditions: b/2 = 5 m, t = 0.02 m, α = 1◦.

the wing surface into Nchord × Nspan panels, the number of beam nodes N is increased from 3
to 10. This allows to observe the impact of both fluid and structural meshes on the convergence
behavior. As can be seen from fig. 10, for each VLM discretization, the wing tip deflection δz
converges to a stable value when N increases. While the VLM discretization is refined, the values
of δz collapse into a single curve. This study shows that AeroFrame computations are consistent
in term of convergence when the meshes are refined.

Additionally, a verification of the work conservation during the data transfer between the fluid
and the structural meshes is done. Based on eqs. (3.5) and (3.6), and on the work conservation
principle, the total aerodynamic work, expressed as

WA
tot =

M∑
i=1

FA
i · δAi , (4.1)

must be equal to the total structural work

WS
tot =

N∑
j=1

(
F S
j · δSj +MS

j · θS
j

)
, (4.2)

where M and N are the number of VLM and beam nodes, respectively. A comparison of WA
tot

and WS
tot is made for a wing geometry with b/2 = 5 m and t = 0.02 m at increasing free-stream

velocities, with angle of attack α = 1◦. The values of WA
tot and WS

tot, reported in table 1, are very
close to each other. The maximum variation between WA

tot and WS
tot is in the order of 1%. This

confirms that the work is conserved during the aeroelastic-loop, and that forces and moments
transferred to the beam nodes accurately reflect the original aerodynamic forces applied to the
wing panels.

Varying free-stream velocity: The first tests are performed with a semi-span b/2 = 5 m, a
thickness t = 0.02 m, at different free-stream velocities U∞. D. Huixue et al. [21] found that
for a deflection smaller than 1.62% of the semi-pan length, the nonlinear effects of the structural
response are negligible. This criteria should be taken into account, as the beam model used
in AeroFrame is linear. The values of the mid-chord tip deflection obtained from AeroFrame
are in good agreement with those of the references (fig. 11a). A maximum relative variation
of 8% with respect to the reference results is found in the linear region, for U∞ ≤ 30 m s−1

(white shaded area in fig. 11a). For a free-stream velocity U∞ = 50 m s−1, the results are more
dispersed. AeroFrame δz value follows that of the beam model of ref. [2], but is 23% below
the value obtained with the shell NASTRAN computation. At this free-stream velocity, the
wing deformation reaches the nonlinear regime of the structural response (gray shaded area in
fig. 11a). The use of a linear beam model that does not capture the geometric nonlinear effects
can be an explanation for these disparities in the results.
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(a) (b)

Figure 11 – AeroFrame results for mid-chord wing tip vertical deflection δz, compared with the
values from references [5] and [2]. The VLM mesh is composed of 10× 50 panels, coupled with
N = 5 beam nodes. The white shaded area represents the region of validity of the linear beam
model, according to D. Huixue et al. [21]. (a) Influence of the free-stream velocity for a wing
geometry with b/2 = 5 m, t = 0.02 m, and α = 1◦. (b) Influence of the wing semi-span b/2 for a
wing thickness t = 0.1 m, with U∞ = 70 m s−1 and α = 1◦.

Varying wing span: The tests are made with a wing thickness of t = 0.1 m, a free-stream
velocity of U∞ = 70 m s−1, for a varying wing span length. Once again the AeroFrame values of
δz are in very good agreement with those of the literature, with a maximum relative variation of
1.7% in the linear structural regime for b/2 ≤ 10 m (white shaded area in fig. 11b). A deviation
from the NASTRAN shells results is observed for b/2 = 20 m in the nonlinear region, while the
AeroFrame value follows those of the beam model of both references.

These first validation tests show that AeroFrame results are consistent with respect to lit-
erature data and are accurate in the linear regime of the structural response. When the wing
deflection reaches the nonlinear region, the results need to be cautiously interpreted, and con-
sidered as a rough estimation of the deformation.

4.1.2 Comparison with medium- and high-fidelity computations

Additional validation tests are made by comparing AeroFrame results with medium-fidelity (Euler
equations) and high-fidelity (Navier-Stokes equations) computations, both coupled with a shell
model. A rectangular wing of thickness t = 4.1 mm, semi-span b/2 = 1.6 m, and chord length
c = 0.35 m is used throughout the tests (fig. 12). The latter is made of isotropic material with an
elastic modulus E = 325 GPa and a shear modulus G = 125 GPa. The free-stream air density
is ρ∞ = 1.225 kgm−3. In AeroFrame, the VLM discretization is made of 20× 100 panels and 50
beam nodes are employed for the structural mesh.

The CFD meshes are made during this study using Ansys ICEM CFD, then the steady CFD
Euler and Navier-Stokes calculations are solved with the Navier-Stokes Multi-Block (NSMB) solver,
using a central differencing space scheme. NSMB is coupled with a nonlinear shell model made
of 10× 50 elements, created with the B2000++ CSM solver. The Spalart-Allmaras one-equation
turbulence model and Sutherland law for viscosity are used in the Navier-Stokes calculations.
The Fluid-Structure Connector (FSCON) spatial coupling tool is employed to couple the CFD and
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(a)

(b)

Figure 12 – Deformation of the rectangular wing obtained from (a) AVL and (b) B2000++. Wing
geometry and material properties: b/2 = 1.6 m, c = 0.35 m, t = 4.1 mm, E = 325 GPa,
G = 125 GPa. Flow conditions: U∞ = 50 m s−1, α = 1.5◦, ρ∞ = 1.225 kgm−3.

CSM databases. The aeroelastic calculations are performed as follows. First, 3000 CFD steps are
made to compute the flow around the undeformed wing, and the resulting aerodynamic forces
are interpolated on the structural mesh. The CSM model computes a first deformation, which
is translated into a displacement of the nodes of the fluid mesh, leading to a new CFD grid used
to get the updated flow solution. Between each structural deformation, 300 CFD steps are made
to obtain the altered flow around the deformed wing configuration. This process iterates until
the structural displacements converge.

Two flow configuration studies are made in this validation part. First, the angle of attack is
increased at a constant free-stream velocity of 17 m s−1. Then, the angle of attack is maintained
at α = 1.5◦ while the free-stream velocity is increasing from 2 to 50 m s−1.

Increasing angle of attack: For this flow configuration, only the Navier-Stokes computations
are solved and compared with AeroFrame results. The Euler calculations encountered conver-
gence issues within the first 3000 CFD steps for angles of attack α ≥ 3◦. This problem is due
to the wing’s rectangular profile, which presents a sharp leading edge. As a result, flow separa-
tion occurs rapidly with increasing incidence, and the Euler calculations struggle to capture this
phenomenon. In the linear deformation regime, AeroFrame results for tip deflection are close to
those computed with high-fidelity methods, with a maximum relative variation of 10% (white-
shaded area in fig. 13a). High-fidelity results show a larger slope of δz with respect to α up to
an incidence of 6◦. Beyond this angle of attack the slope decreases, illustrating the influence
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Figure 13 – AeroFrame results for mid-chord wing tip vertical deflection δz, compared with
medium- and high-fidelity computations (Euler/Navier-Stokes solution and nonlinear shell model
with 10×50 elements). The VLM mesh is composed of 20×100 panels, coupled with N = 50 beam
nodes. The white shaded area represents the region of validity of the linear model, according to
D. Huixue et al. [21]. (a) Influence of the angle of attack at free-stream velocity U∞ = 17 m s−1.
(b) Influence of the free-stream velocity for an angle of attack α = 1.5◦.

of flow separation on the variation of aerodynamic forces. AeroFrame, which uses the VLM to
compute the flow, does not capture the occurrence of stall; consequently, the wing deflection
keeps increasing linearly with the incidence angle.

Increasing free-stream velocity: For these calculations the angle of attack is maintained at
α = 1.5◦, therefore no convergence issues are encountered for the Euler calculations. AeroFrame
values of δz are in very good agreement with those obtained from the coupling of NSMB and
B2000++ in the linear region of the structural response (fig. 13b). A mean relative variation of
5.6% and 6.8% is found with respect to medium- and high-fidelity results. For U∞ > 30 m s−1,
larger deformations are obtained and the three curves start to differ. This shows that in the small
deformation regime, both the linear beam model and the nonlinear shell model yield similar δz
values. When the wing deflection is larger than about 2% of the semi-span length, the geometric
nonlinearity becomes important and the small displacements approximation is no longer valid.
In this deformation regime, the linear beam model of AeroFrame underestimates the wing tip
deflection, and deviates from the nonlinear shell model that captures large deformations and
rotations.

The fact that both medium- and high-fidelity calculations employ the same structural model
allows the observation the impact of the type of CFD simulations used. AeroFrame results are
closer to those obtained from Euler equations because the assumptions of the VLM, such as
inviscid flow, align more closely with the Euler equations than with the Navier-Stokes equations.
The latter account for viscous forces and turbulence, resulting in aerodynamic forces that differ
from those predicted by potential flow theory or the Euler equations.

The validation tests confirm that the wing deflection is accurately captured in the small
displacement region, for different flow conditions. But AeroFrame, using a linear beam model,
underestimates the deformation when nonlinear effects become significant.
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Scaling analysis: AeroFrame results show a linear relation between δz and α when the free-
stream velocity is constant (fig. 13a), and a quadratic increase of δz with respect to U∞ when
the incidence is constant (fig. 13b). This can be explained using basic aerodynamic scaling
arguments. Generally, the lift force L is expressed as

L =
1

2
ρ∞U2

∞SCL, (4.3)

where CL is the lift coefficient, S is the wing surface area, and ρ∞ is the free-stream density.
For thin lifting surface with small incidence, the lift coefficient CL is proportional to the angle
of attack α. Hence, if the fluid flow is incompressible, it follows that

L ∼ U2
∞α. (4.4)

In the small displacements approximation, the deflection depends linearly on the applied force,
i.e δz ∼ L. Combining this scaling with eq. (4.4) leads to:

δz ∼ U2
∞α. (4.5)

This confirms that for a constant free-stream velocity, δz ∼ α, and for a constant incidence,
δz ∼ U2

∞. These results show that AeroFrame captures the fundamental relations derived from
potential flow theory and linear beam theory.

4.2 Results for aircraft wing geometry

The initial validation of AeroFrame was made using a simple rectangular wing configuration.
In this section, results of aeroelastic computations using a more complex wing geometry are
discussed. The latter, the MDO wing, features multiple sections with varying sweep and dihedral
angles, as well as a changing airfoil profile along the span. It was developed and analyzed in the
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Figure 14 – Analysis of the MDO wing for α = 4◦, ρ∞ = 1.1116 kgm−3 and a discretization
of 20 × 100 panels coupled with N = 75 beam nodes. (a) Final deformation along the span for
U∞ = 90 m s−1, compared to the undeformed shape in the y−z plane (note that both axes have
different scales). (b) Wing tip vertical deflection as function of the free-stream velocity. The
white shaded area represents the region of validity of the linear model, according to D. Huixue
et al. [21].
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(a)

(b)

Figure 15 – CFD and CSM results for the MDO wing at α = 4◦, U∞ = 90 m s−1, ρ∞ =
1.1116 kgm−3. (a) Flow solution around the undeformed wing: pressure distribution on the
wing surface, and Mach number contour on a cut in a streamwise plane along the span.
(b) Deflection of the wing along the span, the undeformed configuration is shown in gray.

UNSI (Unsteady Viscous Flow in the Context of Fluid-Structure Interaction) European funded
project, which involved performing steady-state transonic aeroelastic computations [24]. As a
consequence, the CFD and the CSM meshes were already available. The MDO wing has a semi-
span length b/2 = 35 m, an elastic modulus E = 71 GPa, and a shear modulus G = 27 GPa.
A discretization of 20 × 100 VLM panels is coupled with N = 75 beam nodes. In addition to
AeroFrame results, high-fidelity computations are done using NSMB and B2000++ solvers. The
steady, compressible, Navier-Stokes equations are solved using the Spalart-Allmaras turbulence
model and the Sutherland viscosity law. The approach is similar to the one used in section 4.1.2.
The flow solution around the undeformed wing configuration is obtained after 5000 CFD steps
(fig. 15a). Then, a first deformation is computed by the nonlinear CSM beam model, and a
new CFD grid is generated. The process continues with 500 CFD steps, followed by a new
deformation, and repeats until convergence is achieved (fig. 15b). The wing tip deflection is
computed for an angle of attack α = 4◦, with an increasing free-stream velocity from 10 to
90 m s−1. The flight altitude is set to 1 km, resulting in a free-stream density ρ∞ = 1.1116 kgm−3.

The values of the wing tip deflection δz computed with AeroFrame and high-fidelity methods
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are very close for U∞ ≤ 50 m s−1 (fig. 14b), with a mean relative difference of 3.1%. The
results differ by 6% to 15% for higher free-stream velocities, when the large deformation regime
is reached. This result confirms that AeroFrame can solve linear aeroelastic problems for a
complex aircraft wing geometry. Figure 14a shows the final shape of the wing along the span, as
well as the undeformed configuration. In the wing root proximity, the deflection is close to zero
for y ≤ 10 m, i.e. both deformed and undeformed shapes are similar. In this region of the span,
the surface and the second moments of area of the cross-section are high, resulting in a strong
bending rigidity and a small deformation under the lift loading. For y > 10 m, an increase of
the deflection is observed due to the reduction of the wing cross-section. This shows an example
of the structural response of a wing with variable geometric properties along the span.

4.3 Effect of sweep angle and taper ratio on wing deflection

The validation tests have shown that AeroFrame results are consistent with literature data and
medium- to high-fidelity computations. This section investigates the influence of the sweep angle
Λ and the taper ratio λ = ct/cr on the structural response of a wing with a NACA 0012 airfoil
profile. The semi-span is b/2 = 6 m and the root chord length is cr = 1 m (fig. 16, left). The
taper ratio varies between 0.2 and 0.8, while the sweep angle ranges from −10◦ to 20◦. The
elastic and shear moduli of the wing material are E = 40 GPa and G = 15 GPa, respectively.
The wing is discretized into 20× 100 panels, which are coupled with 75 beam nodes.

For every combination of Λ and λ, the wing tip deflection δz and the wing tip twist angle
θy are computed (fig. 17) under constant flow conditions: α = 3◦, U∞ = 68 m s−1, and ρ∞ =
1.225 kgm−3. The minimum wing tip deflection is found for a sweep angle of 5◦ for all values
of taper ratio. Furthermore, for a given sweep angle Λ, the deflection increases with the taper
ratio. Indeed, the value of λ directly affects the lift distribution generated along the wing span;
a low taper ratio tends to change the distribution towards an elliptical one, which moves the
center of pressure inboard to the fuselage axis. This reduces the bending moment applied at the
wing root and decreases the tip deflection [26].

The tip twist angle θy decreases linearly with the sweep angle; for Λ > 2◦, θy becomes negative
and increases as the taper ratio is decreased. Negative sweep angles result in a positive twist,
indicating that swept-forward wings are more sensitive to divergence. Indeed, this positive twist
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Figure 16 – (a) Wing geometry used to investigate the effect of the sweep angle Λ and the taper
ratio λ = ct/cr. Wing dimensions and material properties: b/2 = 6 m, cr = 1 m, E = 40 GPa,
G = 15 GPa. (b) Effect of the sweep angle Λ on the displacement of streamwise segment AB
and segment A′B perpendicular to the reference axis of the wing (figure adapted from [8, 25]).
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Figure 17 – Effect of sweep angle Λ and taper ratio λ = ct/cr on (a) the wing tip deflection
δz and (b) the tip twist θy. Flow conditions: α = 3◦, U∞ = 68 m s−1, ρ∞ = 1.225 kgm−3.
Discretization: 20× 100 panels and N = 75 beam nodes.

increases the incidence of the wing, leading to higher aerodynamic loads and greater deformation.
In contrast, positively swept wings exhibit negative twist angles, making them statistically stable.
This phenomenon is due to the orientation of the reference axis of the wing, which is no longer
perpendicular to the free-stream direction in the case of a swept-wing. Consider the swept-
backward wing in fig. 16 (right); segment AB is in the streamwise direction while segment A′B
is perpendicular to the reference axis. Due to the lift distribution applied on the reference axis,
points A′ and B are deflected by approximately the same distance [25]. The latter distance
being greater than the displacement of point A, the incidence of the streamwise segment AB
is decreased, leading to a diminution of the lift force. This configuration is therefore stable;
this explains why swept-backward wings exhibit very high divergence speed, or sometimes never
diverge [27]. The converse holds for swept-forward wings; the vertical deflection of the wing due
to bending leads to an increase of the incidence of the streamwise sections, resulting in a positive
increment of lift force and a greater incidence. In this case, bending deflections contribute to
static instability, resulting in very low divergence speeds [8].

5 Limitations and prospects for improvement

Despite the effectiveness of the current methodology, the numerical aeroelastic tool developed in
this work faces limitations, and multiple aspects can be enhanced. Alternative interpolation tech-
niques, such as radial basis functions or weighted residual methods, could provide more accurate
mapping of the loads and the displacements between fluid and structural meshes, and improve
the overall robustness [28, 7]. The integration of a nonlinear beam model would allow for more
accurate capture of large displacements and rotations occurring at high free-stream velocities
and high incidence. The possibility to use anisotropic composite materials could represent a
significant improvement, giving the opportunity to define distinct values for elastic modulus and
Poisson’s ratio in the transverse and longitudinal directions of the fibers. These materials are
widely used in wing manufacturing, as they enhance efficiency by combining good mechanical
properties with reduced weight. Another improvement of the present aeroelastic tool would be
to integrate wing control surfaces, such as flaps or ailerons. The vortex lattice method solver
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6 Conclusion

AVL allows the use of control surfaces, but the aircraft geometry definition in CPACS format does
not deal with them yet. Finally, it is important to keep in mind that the present numerical tool
is to be used for conceptual aircraft design; the calculation time should stay reasonably small
in order to be able to rapidly make a large amount of analysis. A trade-off needs to be made
between improving the model and not increasing the computational cost.

6 Conclusion

The vortex lattice method has been coupled with a finite element method implementation of
the linear Euler-Bernoulli beam equations to create a low-fidelity aeroelastic module, called
AeroFrame, in the open source conceptual aircraft design environment CEASIOMpy. A par-
titioned approach has been used, i.e. separate numerical solvers were employed for fluid and
structural computations: AVL and FramAT, respectively. The mapping of aerodynamic forces and
structural displacement between the two non-matching meshes has been done with the nearest
neighbor interpolation method. To ensure the aeroelastic-loop is physically meaningful, all aero-
dynamic loads were transmitted from the fluid to the structure, and the work done by the fluid
on the panel surface was imposed to be the same as the work done by the transferred forces on
the structure.

A convergence analysis of the tip deflection of a rectangular wing has shown that AeroFrame
results are consistent when both fluid and structural meshes are refined. In the region of linear
deformation behavior, the results of the developed aeroelastic tool are in good agreement with
literature data and medium- to high-fidelity computations. The validation tests were conclusive
for simple rectangular wings, as well as for a complex aircraft wing geometry with variable cross-
section, sweep angle, and dihedral angle. For large displacements, AeroFrame results differ from
nonlinear solutions obtained from shell models and cannot be considered accurate. In a last
part, the effect of the sweep angle and the taper ratio on the wing deformation was investigated,
showing an increase of the tip deflection with the taper ratio. It was found that for any value of
the taper ratio, there exists an optimal sweep angle that minimizes the wing deflection. Swept-
forward wings, resulting in a positive twist due to bending deformation, were found to be sensitive
to divergence. In contrast, a negative twist was computed for swept-backward wings, showing a
statically stable behavior.

The AeroFrame module is well-suited for preliminary aircraft design tasks, demonstrating
high accuracy in small deformation scenarios and providing rough estimations when the large
displacement regime is reached. Its low computational cost enables extensive analyses, facilitating
iterative analyses across various material properties and wing geometries. The computational
time required by AeroFrame is in the order of minutes, which is significantly faster than high-
fidelity methods, requiring several hours to produce results.
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