[image:]

ID: COLOSSUS_SoSID_Toolkit_Manual _v1.0.docx
Period: M01-M06

Grand Challenge
SoSID Toolkit Manual

Author(s): Nikolaos Kalliatakis, Hussain Nabih Naeem, Nazlican Cigal

Grant Agreement number: 101097120
Project acronym: COLOSSUS
Project title: Collaborative System of Systems Exploration of Aviation Products, Services and Business Models
Start date of the project: 01/02/2023
Duration: 36 months
Project coordinator name & organisation:
Prajwal Shiva Prakasha
DLR - German Aerospace Center Institute of System Architectures in Aeronautics | Aviation System Design and Assessment
Tel: +49 40 2489641-322
E-mail: prajwal.prakasha@dlr.de

Project website address: https://colossus-sos-project.eu/

TABLE OF CONTENTS

1.	Terms of Use	3
2.	Wildfire Simulation	5
2.1	Basics of the Simulation	5
2.2	Running the Simulation	5
2.3	Wildfire Specific Parameters	6
2.4	Terrain Specific Parameters	9
2.5	Atmosphere Specific Parameters	10
2.6	Aircraft Agent Specific Parameters	11
2.6.1	Aircraft propulsion input parameters	12
2.6.2	Aircraft profile input parameters	16
2.7	Suppression Tactic Parameters	18
2.7.1	SuppressionTacticInput Options	18
2.7.2	change_condition Options	19

[bookmark: _Toc305764081]List of figures and tables

Table 1. Wildfire Parameter Inputs	6
Table 2. Terrain Parameter Inputs	9
Table 3. Atmosphere Parameter Inputs	10
Table 4 Wildfire Aircraft Agent Parameter Inputs	11
Table 5 Aircraft Propulsion Input Parameters	12
Table 6 Aircraft Mission Profile Input Parameters	16
Table 7 Suppression Tactic Parameters	18

1. [bookmark: _Toc190686987]Terms of Use
Terms of Use for SoSID Toolkit (Beta Version)

1. Acceptance of Terms
a. By accessing, downloading, installing, or using the SoSID Toolkit, you agree to be bound by these Terms of Use ("Terms"). If you do not agree to these Terms, please do not use SoSID Toolkit. These Terms apply to all users of the software, including those who are also contributors of content, information, and other materials or services on the Website.

2. Beta Version Disclaimer
a. The SoSID Toolkit you are about to use is released in its beta version. It is still under development, and its features and functionalities are not fully complete. The purpose of this beta release is to obtain feedback from users like you about the software's performance and usability.

b. As a beta version, please be advised that the results produced by the SoSID Toolkit are preliminary and may be subject to errors or inaccuracies. Users are cautioned to use the software for research purposes only and not for critical operations.

c. Your use of this software indicates your understanding and acceptance of the risks associated with beta software.

3. Reporting of Bugs and Strange Behaviors
a. Users are highly encouraged to report any bugs, errors, or strange behaviors encountered while using the SoSID Toolkit. Your feedback is invaluable in improving the software and resolving issues.

b. Please submit reports via email to one of the associated emails with a detailed description of the issue, including steps to reproduce it, screenshots if applicable, and any other information that might be helpful in diagnosing the problem.

4. Publications and Dissemination
a. The use of the SoSID Toolkit for research that results in publications, presentations, or any form of dissemination is subject to the following conditions:

i. All such activities must be discussed with and approved by the developers of the SoSID Toolkit prior to public disclosure. This allows us to ensure the accuracy of the information being disseminated and to properly acknowledge the contributions of the software to your research.

ii. Requests for approval should be sent to prajwal.prakasha@dlr.de, including details of the publication or dissemination activity.

b. The purpose of this condition is to foster collaborative research and to ensure that the use of the SoSID Toolkit in public domains accurately reflects its capabilities and limitations.

5. General Conditions
a. The SoSID Toolkit is provided "as is", and the developers make no warranties regarding its performance, reliability, or suitability for any particular purpose. By using this software, you agree to do so at your own risk.

b. The developers reserve the right to modify these Terms of Use at any time without notice. Your continued use of the SoSID Toolkit after any such changes constitutes your acceptance of the new Terms.

c. These Terms constitute the entire agreement between you and the developers of the SoSID Toolkit and govern your use of the software, superseding any prior agreements between you and the developers.

Contact Information
For any questions, concerns, or suggestions regarding these Terms of Use, please contact one of the associated developers:
Hussain Nabih Naeem – Nabih.naeem@dlr.de
Nazlican Cigal – Nazlican.Cigal@dlr.de
Nikolaos Kalliatakis – Nikolaos.kalliatakis@dlr.de

2. [bookmark: _Toc190686988]Wildfire Simulation

2.1 [bookmark: _Toc190686989]Basics of the Simulation

The wildfire simulation utilizes two main models: a fire model based on cellular automata and an agent-based model which represents the system of systems (SoS) of the wildfire fighting forces. At each time step in the simulation, the fire model computes its spread across a terrain and then aircraft agents (and soon ground agents) will determine how to approach and suppress the fire progression based on an operational doctrine. There are many variables that affect how this procedure is conducted and its success, from simulation parameters, to operational parameters and agent-based designs. These are all tune-able based on an input file.

 At the current state, certain parameters such as the terrain and mission start time are fixed and unchangeable. This is to ensure that the scenario descriptions outlined in the project scenario are maintained to a consistent degree. The terrain features, such as the vegetation, residential areas, water areas and elevation data are all fixed to the associated map region. For the Grand Challenge, nearly all inputs in the scenarios are fixed as teams are encouraged to design their own aircraft and define new `agents` in the input file. In addition to this, part of the challenge is the exploration of SoS. As such, it is expected that even though the scenarios are pre-defined, changes to operational considerations are acceptable (so long as adequate reasoning and argumentation is provided). It is also expected that new inputs may be defined in the scenario input files, based on any developments made by the teams.

Control and manipulation of the wildfire simulation inputs is done based on an input file `toolkit_input.json`. Within this file, there is a possibility to refer to other files, namely the agent definition files (to be used for defining the aircraft designs). Unless specified, all inputs will be assumed as default values. 	Comment by Cigal, Nazlican: We can attach a json file as appendix to exemplify	Comment by DLR\knoe_lu: Sounds like a good idea!	Comment by Naeem, Nabih: Lets define one to accompany the exe with all the inputs that are free for the user to vary defined with default settings.

2.2 [bookmark: _Toc190686990]Running the Simulation

1. Upon copying and installing the repository, read and follow the instructions in the `CONTRIBUTING.md`
2. Navigate to the examples/wildfire/data/scenarios/inputs folder to view the different scenarios provided in the Grand Challenge.
3. To apply a certain scenario, navigate to examples/wildfire/main.py and change the input file path matching to the scenario you would like to run. If you would like to make changes to the input file it is recommended to make a copy of the input file, apply any changes, and then place the copied file path into the `Overwrites`. Doing so will ensure that the default values for the scenario are maintained and any additional changes are applied afterwards.
4. To change the agents/ aircraft, change the `agents` input in the overwrites/ copied input file matching the aircraft file path present in examples/wildfire/data/aircraft/.
5. Run `main.py` via the terminal or the coding software.
6. A GUI of the wildfire simulation should open. Run the simulation by clicking `start` in the bottom left corner, see Figure 1.
[image:]
[bookmark: _Ref190687060][bookmark: _Ref190687054]Figure 1 GUI of SoSID Toolkit
7. Once completed or stopped, close the GUI of the simulation. All simulation outputs will be written to in the output files present in examples/wildfire/data/scenarios/outputs
Below, the various inputs across the scenario input files and aircraft input files are described. Please refer to these tables to understand what the parameters mean.

Some parameters may be highlighted to indicate that they are under no conditions modifiable in the Grand Challenge.

The other parameters are modifiable given sufficient reasoning. For example, once could add airbases if their SoS design idea is based on having a DIY airbase which can be quickly set-up in a new location (potentially for smaller aircraft/ eVTOLS). Video guides may assist you as well in navigating how to change these parameters and the code base, and are present in the resources folder.

2.3 [bookmark: _Toc190686991]Wildfire Specific Parameters

These are the bulk inputs of the wildfire simulation. All subsidiary inputs, such as terrain specifications, atmosphere specifications and agent specifications (for aircraft design) are referred to in this class.

[bookmark: _Toc190685925]Table 1. Wildfire Parameter Inputs	Comment by DLR\knoe_lu: I think a ”Comment” column for each table would be good. Such a column could for example explain the possible range/interval for values and also give additional details where needed	Comment by Kalliatakis, Nikolaos: I made it part of the default values, just for space issues and formatting
	Comment by Kalliatakis, Nikolaos:
	Parameter
	Definition
	Format [unit]	Comment by Cigal, Nazlican: mn
	Default values
[comments]

	time_step
	The smallest time unit for each simulation iteration step for the agent model
	float [s]
	1

	enable_adaptive_time_step
	Whether the wildfire model should calculate its own ideal timestep. Setting to false will use the time_step for the fire model as well.
	bool
	true

	max_runtime
	The maximum number of seconds from mission start to simulate
	int [s]
	43200

	output_sampling_time
	Frequency of output generation for results
	int [s]
	300

	map_in_map
	Whether the operational (larger) map should be utilized
	bool
	true

	export_img
	Whether an image of the end state of the fire map should be outputted
	bool
	true

	import_features_osm
	Whether to use the OSM defined terrain features
	bool
	true

	ignition_centers
	The location of ignition centers in GPS coordinates or grid indices.
	List(dict{
“gps_coords” : (lat,lon)})

[lat,lon]
	[{“gps_coords”:
[38.76, 9.44]}, {“gps_coords” :
[38.6, 9.04]}]

	correction_coefficient
	A factor applied in the wildfire model to better simulate fires
	float
	[bookmark: _GoBack]0.4

	deploy_osm_airport_locations
	Whether OSM obtained airport data should be employed.
	bool
	true

	k_nearest_airports	Comment by Cigal, Nazlican: With the last pr, the user input changes a little bit, can you check #492
	The number of OSM found airports to be used. Airports closest to ignition center prioritized.
	int [-]
	8
[max = X]
[-1 indicates all
available airports]

	airports
	Airport agent definitions, using gps coordinates and takeoff/landing types (`runway`, `vertipad`, `water`)
	List(dict{
“takeoff_landing_types”: TakeoffLandingType,
“gps_coords” : (lat,lon)})

	[{"takeoff_landing_types": "vertipad",
"gps_coords":
[38.6934,-9.4192]},]

	protection_locations
	The positions of locations (GPS/ Euclidean) agents should prioritize in protecting
	List(dict{
“gps_coords” : (lat,lon)})

	[{"gps_coords":
 [38.760, - 9.44]]

	urban_locations
	The positions of locations (GPS/ Euclidean) for additional urban areas based on elliptical dimensions [m] and angles.
	List(dict{
“gps_coords” : (lat,lon),
“radius”: [x,y],
“angle” : [deg]})

	[{“gps_coords":
[38.765, -9.424], "radius": [100, 50],
“angle”: 90}]

	deploy_osm_waters
	Whether OSM obtained water locations and polygons should be used.
	bool
	true

	water_sources
	The positions of water sources (excluding OSM obtained) in GPS/ Euclidean coordinates.
	List(dict{
“gps_coords” : (lat,lon)})

	 [{"pos": [200,40000]}]

	response_time
	The time between ignition start (mission_start) and the agent’s departure from their bases
	int [s]
	3600

	takeoff_interval
	The time between subsequent departures at airbases
	int [s]
	120

	turnaround_time
	The time required for each aircraft to hold at the airbase between subsequent missions- this time is added to refueling/ recharge times
	int [s]
	300

	suppression_altitude
	Altitude [m] for agent to drop suppressant or water onto fire
	float [m]
	50
[0 ≤ altitude]

	resupply_altitude
	Altitude [m] for agent to resupply from water source
	float [m]
	15
[0 ≤ altitude]

	enable_nighttime_operations
	Specifies whether aerial agents can conduct missions past sunset
	bool [true/false]
	true

	scoop_time
	The duration an agent needs to pick up water from source
	float [s]
	30

	distance_cost_weight
	Prioritizes selecting fire fronts closest to water (higher closer). 	Comment by DLR\knoe_lu: Is there a range on these floats, e.g. should it be between 0-1 or can it be 1 to inf?
	float [-]
	1
[Values are unbounded, recommendation:
0 ≤ weight ≤1]

	vip_cost_weight
	Prioritizes selecting fire fronts closest to VIP locations (highercloser)
	float [-]
	1
[Values are unbounded, recommendation:
0 ≤ weight ≤1]

	priority_cost_weight
	Prioritizes selecting fire fronts closest to residential areas (highercloser)
	float [-]
	1
[Values are unbounded, recommendation:
0 ≤ weight ≤1]

	vegetation_cost_weight
	Prioritizes selecting fire fronts closest to flammable terrain (higher closer) used in “vegetation” priority
	float [-]
	1
[Values are unbounded, recommendation:
0 ≤ weight ≤1]

	topography_cost_weight
	Prioritizes selecting fire fronts closest to areas where the terrain slope and wind would increase fire spread (highercloser)
	float [-]
	1
[Values are unbounded, recommendation:
0 ≤ weight ≤1]

	terrain_inputs
	Dictionary defining all TerrainParameters
	dict [-]
	“terrain_inputs” : {[See Table 2}

	agents
	Dictionary defining the agent’s file name, suppression tactic and locations. The locations indicate their starting positions and match the order of the `airports` inputs.

To see how to define the aircraft file, see Table 4.

The suppression tactic must follow that shown in Suppression Tactic Parameters
	dict [-]
	[{file_name": "example_aircraft_1.json",
"agents_per_base": [1,1 1,1 ,1],
"suppression_tactic": { "main": {
"select_poi": "indirect",
"track_poi": "indirect",
"suppress": "indirect"},
 "alternative” : “threshold": [17, 4],
"change_condition": "daytime", "alternative_tactic": {
"select_poi": "vip"}}}}]

	run_api_for_atmosphere
	Specifies whether the weather data should be based on historical data or a mathematical model (True = historical). The historical data is obtained via an API which stores weather data for a specific region and time.
	bool [true/false]
	false

	atmosphere_inputs
	Dictionary specifying the atmosphere data model inputs (used when `run_api_for_atmosphere = false`
	dict [-]
	“atmosphere_inputs” : {[See Table 3]}

2.4 [bookmark: _Toc190686992]Terrain Specific Parameters

These inputs are placed within the terrain_inputs of the WildfireParameters. Most terrain inputs are fixed to ensure consistency amongst the scenario description of the COLOSSUS project. There are still factors that one can vary to conduct individual analyses or sensitivities.

[bookmark: _Ref159250811][bookmark: _Toc190685926]Table 2. Terrain Parameter Inputs
	Parameter
	Definition
	Format
	Default values

	file_namespace_operational
	File name of the operational terrain (larger map) to be used.
	str(Path)
	"SintraSmall_128x128_800"

	file_namespace
	File name of the main fire grid.
	str(Path)
	"SintraSmall_360x260_10m"

	cell_size
	Cell size (width and length) of the fire map. This must match the `file_namespace` .
	int [m]
	10

	priority_map_sigma
	Defines the distance strength for generating the area around residential areas. Larger sigma larger area around residential that is prioritized
	int [-]
	30	Comment by DLR\knoe_lu: Same thing here with float range, what happens if I enter 3000000000000? 😉

[0 ≤ priority_map_sigma ≤ 100]

	height_scale_factor
	Scales the elevation of the terrain
	float [-]
	1
[0 < height_scale_factor]

	import_features_osm
	Whether OSM obtained terrain data (vegetation, urban areas, water, etc.) should be used to construct the fire map.
	bool
	true

2.5 [bookmark: _Toc190686993]Atmosphere Specific Parameters

These inputs are placed within the atmosphere_inputs of the WildfireParameters. These inputs define the mathematical model variables for atmosphere approximations. It is advised to use the API for atmosphere data to maintain a higher accuracy as it is historical data, but the mathematical model can be beneficial for sensitivity analyses and independent studies. For the Grand Challenge, these parameters should not be changed but are worthwhile exploring for bias comparison and can be useful in determining SoS solution effectiveness and robustness (useful when grading).	Comment by DLR\knoe_lu: Could the ”API” be better explained perhaps? It is mentioned in table 1 as well but without any explanation
[bookmark: _Ref159250747][bookmark: _Toc190685927]Table 3. Atmosphere Parameter Inputs
	Parameter
	Definition
	Format
	Default values

	temperature_range
	Daily temperature range
(high, low, next day low) in °C
	List[°C, °C, °C,]
	(10.0, 25.0, 10.0)

	temperature_times
	The times matching the daily high and low temperatures
	List[hour, hour]
	(5,15) 05:00 and 15:00

	sun_times
	Sun rise and sun set times
	List[hour, hour]
	(6, 20)
[0 ≤ time ≤ 24]

	time_of_max_solar_height
	Time corresponding to where Sun is at peak (90°)
	float [hour]
	12
[0 ≤ time ≤ 24]

	humidity_range
	Minimum and maximum daily relative humidity values
	List[%, %]
	(20,70)
[0 ≤ humidity ≤ 100]

	wind_run
	Total wind run of the day
	float [km/d]
	500
[0 ≤ wind_run]

	general_winddirection
	Overall tendency of the wind. 0° indicates wind is coming from North
	float [°] (0 = wind from North)
	300
[0 ≤ direction ≤ 360]

	range_winddirection
	Expected variance in wind direction from general value throughout the day
	float [°]
	30
[0 ≤ direction ≤ 360]

	update_frequency
	Specifies how frequently weather values should be changed throughout the simulation
	int [s]
	600

	latitude
	Latitude of the ignition map center- used for Atmosphere API only
	Lat
	38.755

	longitude
	Longitude of the ignition map center- used for Atmosphere API only
	Lon
	-9.42

2.6 [bookmark: _Toc190686994]Aircraft Agent Specific Parameters

Unlike terrain and atmosphere parameters, there are many more agent parameters that are variable. Additionally, to allow for connection with aircraft design tools, the agent parameters are defined in a separate file to the main wildfire simulation parameters. The agent definition should be referred to in the wildfire simulation input file accordingly.
[bookmark: _Ref159308608][bookmark: _Ref159308602][bookmark: _Toc190685928]Table 4 Wildfire Aircraft Agent Parameter Inputs
	Parameter
	Definition
	Format
	Default values

	icon
	The file_path of the SVG to be used for GUI representation. Found in `wildfire/static/…`
	str(FilePath)
	`evtol.svg`

	takeoff_landing_type
	The applicable air bases for the aircraft:
runway = airport/ conventional base similar
vertipad = helipad/ UAM base similar
water = seaport/ seaplane base similar
	str(TakeOff
LandingType)
	vertipad

	autonomous
	Whether the aircraft can operate without a pilot. Currently this has no impact on wildfire strategies or aircraft performance (HINT for future expansion)
	bool
	true

	mtom
	Maximum take-off mass of the aircraft
	float [kg]
	1988

	empty_mass
	Operational empty mass of the aircraft
	float [kg]
	1628

	payload
	Defines the maximum payload of the aircraft (affects amount of water/ suppressant carry)
	float [kg]
	500

	fflow_rate
	Average flow rate of suppressant/ water as it leaves aircraft
	float [m^3 /s]
	1.2

	can_scoop
	Whether the aircraft can scoop water or if it the aircraft needs to rely on airbase resupply
	bool [True/False]
	True

	scooping_distance
	The distance required to scoop suppressant from a water source. Impacts feasible water sources.
	float [m]
	6

	span
	Defines the aircraft wing span (maximum y length). Impacts feasible water sources.
	float [m]
	6

	propulsion_input
	Defines the propulsion related parameters of the aircraft system.
	dict(PropulsionInput)
	“propulsion_input”:{
xxx : xxx
}
Aircraft propulsion input parameters

	profile_parameters
	Defines the mission profile characteristics of the aircraft (speeds, distances and altitudes)
	dict(
ProfileParameters)
	“profile_parameters” : {
xxx : xxxx
}
See

2.6.1 [bookmark: _Ref188869259][bookmark: _Toc190686995]Aircraft propulsion input parameters
Aircraft propulsion in the toolkit can be defined in terms of both energy and fuel consuming architectures. To accommodate both, a PropulsionInput dictionary is defined. Listed are the various inputs one can use to specify the propulsive parameters.
[bookmark: _Toc190685929]Table 5 Aircraft Propulsion Input Parameters
	Parameter
	Definition
	Format
	Default values

	architecture
	The power system the aircraft uses. Choices are between electric, conventional and hybrid.
NOTE if hybrid is chosen, the electric and fuel dictionaries are required as additional inputs where each one is a separate instantiation of PropulsionInput dictionary. An example is shown in Figure 2.
	str
	electric

	hybridization_ratio
	The degree of hybridization of the aircraft (power relative to fuel consumption).
NOTE this is only required in hybrid architectures
	float [-]

Bound [0,1]
	N/A
(not shown for electric or conventional)

	total_propellant
	Defines the total fuel (conventional) or energy (battery) of the system.
	float [kg] fuel/
float [kJ] energy
	492445

	reserve_propellant
	Defines the reserve fuel (conventional) or energy (battery) of the system.
	float [kg] fuel/
float [kJ] energy
	33253

	propellant_unit
	The unit used to define the propellant parameters. Currently only kg and kJ are accepted
	str
	“kJ”

	refuelling_rate
	Defines the refuelling (fuel-based aircraft) rate of the aircraft at airbases.
	float [kg/s] fuel

	15.14

	charging_power
	Defines the charging power (energy-based aircraft) of the aircraft at airbases
	float [kJ/s] energy
	359.019

	battery_swap_enabled
	Whether or not energy-based aircraft have battery swapping technology (no recharging required)
	bool
	true

	battery_swap_time
	Defines the time required for battery swapping.
	float [s]
	600

	taxi_out_fc
taxi_out_power
	Defines the required fuel consumption/ power for the aircraft during taxi out. For fuel, up to 2 mass/power pairs are possible, whereas energy-based aircraft more are allowed.
	float
or
dict[int (mass), float(fc/power)]
	{“1628”:32.654,
“2128”:42.612}

	taxi_in_fc
taxi_in_power
	Defines the required fuel consumption/ power for the aircraft during taxi in. For fuel, up to 2 mass/power pairs are possible, whereas energy-based aircraft more are allowed.
	float
or
dict[int (mass), float(fc/power)]
	{“1628”:32.654,
“2128”:42.612}

	transition_fc
transition_power
	Defines the required fuel consumption/ power for the aircraft during transition (for VTOLs). For fuel, up to 2 mass/power pairs are possible, whereas energy-based aircraft more are allowed.
	float
or
dict[int (mass), float(fc/power)]
	{“1628”: 274.267,
“2128”: 330.716}

	retransition_fc
retransition_power
	Defines the required fuel consumption/ power for the aircraft during re-transition (for VTOLs). For fuel, up to 2 mass/power pairs are possible, whereas energy-based aircraft more are allowed.
	float
or
dict[int (mass), float(fc/power)]
	{“1628”: 274.267,
“2128”: 330.716}

	takeoff_fc
takeoff_power
	Defines the required fuel consumption/ power for the aircraft during take-off. For fuel, up to 2 mass/power pairs are possible, whereas energy-based aircraft more are allowed.
	float
or
dict[int (mass), float(fc/power)]
	{“1628”:332.452,
“2128”:433.089}

	cruise_climb_fc
cruise_climb_power
	Defines the required fuel consumption/ power for the aircraft during cruise climb. For fuel, up to 2 mass/power pairs are possible, whereas energy-based aircraft more are allowed.
	float
or
dict[int (mass), float(fc/power)]
	{“1628”:350.8,
“2128”:385.032}

	cruise_fc
cruise_power
	Defines the required fuel consumption/ power for the aircraft during cruise. For fuel, up to 2 mass/power pairs are possible, whereas energy-based aircraft more are allowed.
	float
or
dict[int (mass), float(fc/power)]
	{“1628”:268.507,
“2128”:285.914}

	cruise_descent_fc
cruise_descent_power
	Defines the required fuel consumption/ power for the aircraft during cruise descent. For fuel, up to 2 mass/power pairs are possible, whereas energy-based aircraft more are allowed.
	float
or
dict[int (mass), float(fc/power)]
	{“1628”:195.196,
“2128”:195.027}

	landing_fc
landing_power
	Defines the required fuel consumption/ power for the aircraft during landing. For fuel, up to 2 mass/power pairs are possible, whereas energy-based aircraft more are allowed.
	float
or
dict[int (mass), float(fc/power)]
	{“1628”:332.452,
“2128”:433.089}

	hover_fc
hover_power
	Defines the required fuel consumption/ power for the aircraft during hover (for VTOL). For fuel, up to 2 mass/power pairs are possible, whereas energy-based aircraft more are allowed.
	float
or
dict[int (mass), float(fc/power)]
	{“1628”:326.543,
“2128”:426.117}

	loiter_fc
loiter_power
	Defines the required fuel consumption/ power for the aircraft during cruise loiter- used when waiting for landing or for scooping. For fuel, up to 2 mass/power pairs are possible, whereas energy-based aircraft more are allowed.
	float
or
dict[int (mass), float(fc/power)]
	{“1628”:350.8,
“2128”:385.032}

[image:]
[bookmark: _Ref190687125]Figure 2 Example hybrid propulsion input
2.6.2 [bookmark: _Toc190686996]Aircraft profile input parameters
Aircraft profile in the toolkit relates to common mission profile data that is used to define the velocities, accelerations and altitudes of the aircraft. Unlike the propulsion inputs, this is invariant to architecture changes. Listed are the various inputs one can use to specify the profile input parameters.

[bookmark: _Toc190685930]Table 6 Aircraft Mission Profile Input Parameters
	Parameter
	Definition
	Format
	Default values

	taxi_out_duration
	Defines the time required to perform taxi out
	float [s]
	60

	taxi_in_duration
	Defines the time required to perform taxi in
	float [s]
	60

	transition_duration
	Defines the time required to perform transition for VTOL aircraft. For non-VTOL aircraft, make this value 0
	float [s]
	45.887

	retransition_duration
	Defines the time required to perform re-transition for VTOL aircraft. For non-VTOL aircraft, make this value 0 s
	float [s]
	45.887

	takeoff_altitude
	Defines the altitude at which take-off is completed. Transition occurs after if possible, else cruise climb begins.
	float [m]
	15.24

	takeoff_climb_rate
	Defines the vertical speed of the take-off phase.
	float [m/s]
	0.508

	takeoff_ground_speed
	Defines the horizontal speed, based on the ground/ surface altitude, of the take-off phase. For VTOL this may be 0 m/s.
	float [m/s]
	0

	cruise_climb_rate
	Defines the vertical speed of the cruise climb phase.
	float [m/s]
	3.556

	cruise_climb_ground_speed
	Defines the horizontal speed, based on the ground/ surface altitude, of the cruise climb phase.
	float [m/s]
	51.272

	cruise_altitude
	Defines the altitude at which cruise climb is completed and the transition to cruise occurs.
	float [m]
	457.2

	cruise_speed
	Defines the horizontal speed of the aircraft during cruise.
	float [m/s]
	90

	cruise_descent_rate
	Defines the vertical speed of the cruise descent phase.
	float [m/s]

Positive values indicate downwards movement.
	3.556

	cruise_descent_ground_speed
	Defines the horizontal speed, based on the ground/ surface altitude, of the cruise descent phase.
	float [m/s]
	51.272

	landing_altitude
	Defines the altitude at which cruise descent is completed. Re-transition occurs after if possible, else landing starts.
	float [m]
	15.24

	landing_descent_rate
	Defines the vertical speed of the landing phase.
	float [m/s]

Positive values indicate downwards movement.
	0.508

	takeoff_ground_speed
	Defines the horizontal speed, based on the ground/ surface altitude, of the landing phase. For VTOL this may be 0 m/s.
	float [m/s]
	0

	loiter_speed
	Defines the horizontal speed, based on the ground/surface altitude, of the loiter movement.
	float [m/s]
	51.272

[bookmark: _Ref188003559]
2.7 [bookmark: _Toc190686997]Suppression Tactic Parameters

These inputs are placed within the suppression_tactic of the agents input. This is the crux of the operational strategy of the firefighting aircraft and offers some modularity. Each suppression tactic is based on the SuppressionTacticInput class which is based on 3 inputs which correspond to how the aircraft: 1- selects the areas to suppress, 2- tracks these areas for any changes (useful if the progresses or the area is already suppressed by another agent) and 3- suppresses the point of interest (useful to maximize fire suppression or suppressed area). Additionally, the toolkit offers the ability to dynamically swap tactics based on a change_condition input, where a condition is checked and an alternative tactic is employed to replace the main tactic.

[bookmark: _Toc190685931]Table 7 Suppression Tactic Parameters
	Parameter
	Definition
	Format
	Default values

	main
	An instance of SuppressionTacticInput containing select_poi, track_poi and suppress strings. By default the select_poi, track_poi, suppress tasks are defined as shown.
	dict(
“select_poi”: str,
“track_poi”: str,
“suppress”: str
	{“select_poi” : “water”,
“track_poi” : “follow_firefront”,
“suppress” : “direct”}

	alternative
	Details the change condition, threshold for change and alternative tactic input of SuppressionTacticInput. By default, the alternative_tactic follows the same defaults as the main defaults.
	dict(
“change_condition”:
str,
“threshold”: [float | float,float]
“alternative_tactic”:
SuppressionTactic
Input

	{“change_condition": “daytime",
“threshold": [17, 4], "alternative_tactic": {
"select_poi": "indirect",
"track_poi": "indirect",
"suppress": "indirect" } }

2.7.1 [bookmark: _Toc190686998]SuppressionTacticInput Options

In order to understand the modularity of the suppression tactics, the different methods and explanations for the tasks of select_poi, track_poi and suppress are detailed.

· select_poi
· Options: water, vip, vegetation, topography, indirect
· Definitions:
· water: chooses fire front based on that with the highest spread rate, closest water sources and those in greatest threat to protection_locations and urban areas.
Considers distance_cost_weight, vip_cost_weight, priority_cost_weight
· vip: does the same as water but prioritizes areas where `protection_locations` are defined in the input file by ignoring urban areas.
Considers distance_cost_weight, vip_cost_weight
· topography: prioritizes fire fronts where elevation is more likely to accelerate fire spread (based on slope data).
Considers distance_cost_weight, vip_cost_weight, topography_cost_weight
· vegetation: prioritizes fire fronts where nearby vegetation is of higher combustibility or areas which will increase fire spread.
Considers distance_cost_weight, vip_cost_weight, vegetation_cost_weight
· indirect: creates an elliptical fire line around the center of the fire (if multiple ignition centers it creates a mean center point). Aircraft then select their suppression locations to fulfill the fire line and do not directly suppress the fire, instead trying to constrain the fire from propogating.
Does not consider any weighting inputs.
· track_poi
· Options: direct, indirect, follow_firefront
· Definitions:
· direct: the agent simply moves to the original selected point of interest and does not do any recalculation, even if the area is suppressed or burnt.
· follow_firefront: the agent moves to the original selected point of interest but monitors the fire spread rate, ensuring it selects the region with the greatest fire spread. This ensures that if the fire is extinguished or suppressed a new destination is chosen.
· indirect: the agents move to the fire line created by select_poi and checks if the original chosen area is burnt or extinguished to ensure the fire line is then continued correctly. Note setting track_poi to indirect functions better if the select_poi is indirect as well as otherwise the fire line itself is not being selected for suppression initially.
· suppress
· Options: direct, indirect
· Definitions:
· direct: the agent orients its suppression angle to maximize burnt area captured whilst minimizing already suppressed areas.
· indirect: the agent orients its suppression angle to maximize the fulfillment of the fire line. Note setting suppress to indirect functions better if the select_poi and potentially track_poi is indirect as well as otherwise the fire line itself is not being selected for suppression initially.
2.7.2 [bookmark: _Toc190686999]change_condition Options

Agents can dynamically swap their tactics from main to alternative based on the inputted change_condition and its threshold. This section will cover the options for these two parameters and their meaning.

· change_condition
· Options: no_change, runtime, daytime, residential, burnt_area, distance
· Definitions:
· no_change: the agents do not undergo any tactic swapping and maintain their main tactic input. This is the default condition. Note it is possible that when the agents are fulfilling indirect attack for their select_poi that the fire line is completed or is detected to fail (this can happen in unique occasions where the fire propagation is very one directional), in such occurrences the agents will automatically swap to the default SuppressionTacticInput of water suppression.
The threshold is not defined / disregarded in this condition.
· runtime: the agents swap tactics when a certain runtime is met, in hours from simulation start (ie: 4 indicates 4 hours from the mission start time)
The threshold is defined as an integer of hours from mission start time.
· daytime: the agents swap tactics between two hours of the day, allowing time-based modularity for daytime/ nighttime tactics or time-specific tactics.
The threshold is defined as a tuple of daytime hours (ie: [10,18.5] indicates that from 10AM to 6:30 PM the agents will swap tactic). Between the hours listed, the agents will swap to their alternative tactic.
· residential: the agents swap tactic based on the nearest distance between the fire fronts and urban areas.
The threshold defines the maximum allowable distance [m] between the fire and the urban bounds that the agents will allow before swapping to their alternative_tactic (ie: 150 means that the agents will swap tactics only when the fire reaches 150m to the nearest urban bounds.
· burnt_area: the agents swap tactic when the total fire burnt area exceeds the given threshold.
The threshold is defined in burnt area [m2] (ie: 10000 means that the tactic is swapped when the total fire burnt area exceeds 10’000 m2/ 1 hectare)
· distance: the agents swap tactic based on the nearest distance between the fire fronts and the fire line. It is possible that the agents suppress the fire, making the distance between the next fire front and the fire line greater than the threshold, resulting in a continuation of the main tactic.
The threshold is defined in the maximum allowable distance [m] between the fire line and the nearest fire front. It is advised to use this condition only if the agents are conducting indirect attack with the fire block to prevent anomalous behavior.

	Page 1 of 7
	
FUNDED BY THE EUROPEAN UNION UNDER GRANT AGREEMENT NO 101097120. VIEWS AND OPINIONS EXPRESSED ARE HOWEVER THOSE OF THE AUTHOR(S) ONLY AND DO NOT NECESSARILY REFLECT THOSE OF THE EUROPEAN UNION OR CINEA. NEITHER THE EUROPEAN UNION NOR THE GRANTING AUTHORITY CAN BE HELD RESPONSIBLE FOR THEM.

	[image:]

Page 2 of 7		[image:]

image1.png
@start » Resume () Pause () Stop Time step: 1.00 [s] ([Slaving | Steps per frame: 10 GrExport SVG Zoom: 100 % FPS: 142 Simulation Runtime: 0:00:00 Current Mission Time: 25 July 2022 20:00:00

image2.png
‘examples > wildfire > data > aircraft > {} example_seaplane hybrid_1json > ...

12 “propulsion_input”: {
13 "architecture”: "hybrid”,

1 "hybridization_ratio”: .26,

15 "conventional”: {

16 "total_propellant”: 513.934887,

17 “reserve_propellant”: 154.601887,
18 "propellant_unit": “kg",

19 “refueling rate": 15.14,

2 "taxi_out_fc": 8.015734264524767456,
2 "taxi_in_fc": 8.615734264524707456,
2 transition_fc": 0.,

23 “retransition_fc": 6.0,

2 takeoff_fc": 8.6366833333333333,
25 "cruise_climb_fc": {

26 10555": 6.63043497267759563,
27 "7716": 0.61739141414141414

28 I

29 "cruise_descent_fc": {

£ "10555": 6.0339924554183813,
31 "7716": 0.6346747835958563

3 I

33 cruise_fc": {

34 "10555": 6.6440772434551309,
E "7716": 0.8437137968744488

E s

37 "landing_fc": 8.6346747835058563,
38 "loiter_fc": ©.6433637394444444

39 i

40 electric™: {

a1 "total_propellant”: 646234.93,

2 “reserve_propellant”: 520361.00016000605,
a3 "propellant_unit": k3",

a "battery_chemistry”: "NMC",

5 "charging_power™: 359.19,

6 "battery_specific_energy”: 585.6,
a7 “"m_battery_m_total_ratio”: ©.1176263837454846,
48 "battery_lifecycles”: 500,

49 “battery_suap_enabled”: true,

56 “battery_suap_time": 660.0,

51 "taxi_out_power”: 38.6,

52 "taxi_in_power™: 38.6,

53 "transition_power™: 8.0,

54 “retransition_power”: .8,

55 “takeoff_power”: {

image3.png
N\

COLOSSUS

COLLABORATIVE SYSTEM OF SYSTEMS

image4.png
******* Funded by
o the European Union

